Modeling and Analysis of Spray Pyrolysis Deposited SnO2 Films for Gas Sensors
نویسندگان
چکیده
Metal oxide materials such as tin oxide (SnO2) show powerful gas sensing capabilities. Recently, the deposition of a thin tin oxide film at the backend of a CMOS processing sequence has enabled the manufacture of modern gas sensors. Among several potential deposition methods for SnO2, spray pyrolysis deposition has proven itself to be relatively easy to use and cost effective while providing excellent surface coverage on step structures and etched holes. A model for spray pyrolysis deposition using a pressure atomizer is presented and implemented in a Level Set framework. A simulation of tin oxide deposition is performed on a typical gas sensor geometry and the resulting structure is imported into a finite element tool in order to analyze the electrical characteristics and thermo-mechanical stress present in the grown layer after processing. The deposition is performed at 400 C and the subsequent cooling to room temperatures causes a stress to develop at the material interfaces due to variations in the coefficient of thermal expansion between the different materials. L. Filipovic (&) S. Selberherr Institute for Microelectronics, Technische Universität Wien, Gußhausstraße 27–29/E360, A–1040 Wien, Austria e-mail: [email protected] S. Selberherr e-mail: [email protected] G. C. Mutinati E. Brunet S. Steinhauer A. Köck Molecular Diagnostics, Health and Environment, AIT GmbH, Donau-City-Straße 1, A–1220 Wien, Austria e-mail: [email protected] E. Brunet e-mail: [email protected] S. Steinhauer e-mail: [email protected] A. Köck e-mail: [email protected] G.-C. Yang et al. (eds.), Transactions on Engineering Technologies, DOI: 10.1007/978-94-017-8832-8_22, Springer Science+Business Media Dordrecht 2014 295
منابع مشابه
Thickness Dependence of Sensitivity in Thin Film Tin Oxide Gas Sensors Deposited by Vapor Pyrolysis
Transparent SnO2 thin films were deposited on porcelain substrates using a chemical vapor deposition technique based on the hydrolysis of SnCl4 at elevated temperatures. A reduced pressure self-contained evaporation chamber was designed for the process where the pyrolysis of SnCl4 at the presence of water vapor was carried out. Resistive gas sensors were fabricated by providing ohmic contacts o...
متن کاملInfluence of N2- and Ar-ambient annealing on the physical properties of SnO2: Co transparent conducting films prepared by spray pyrolysis technique
In this contribution, the Co doped SnO2 transparent semi-conducting films are prepared by spray pyrolysis technique and the influence of N2-and Ar-ambient annealing on their structural, electrical and optical properties are studied. The SnO2:Co thin films were deposited on the glass substrate at substrate temperature of 480 ˚C using an aqueous-ethanol solution consisting of tin and cobalt chlor...
متن کاملImproving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique
Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD) process on quartz substrates. Afterwards, a thin layer of palladium (Pd) as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors...
متن کاملSynthesis and electrochemical studies on Cu-TiO2 thin films deposited by spray pyrolysis technique for sensing Uric acid
In this study, we report an effective uric acid (UA) electrochemical biosensor using Cu-TiO2 electrode. UA is a biomedical compound that plays a vital role in human metabolism. The abnormal level of UA leads to several diseases. TiO2 and Cu-TiO2 with various concentrations were deposited on glass substrates by spray pyrolysis technique. The structural study show...
متن کاملPreparation and growth of SnS thin film deposited by spray pyrolysis technique
In this paper thin films of tin sulfide (SnS) were deposited on the glass substrates using spray pyrolysis method with the substrate temperatures in the range of 400–600℃, keeping the other deposition parameters constant. In this work the characteristic of SnS thin films investigated. The XRD pattern and optical transmittance of thin films also are discussed. With the change in concen...
متن کامل